Acetylation modification regulates GRP78 secretion in colon cancer cells
نویسندگان
چکیده
High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors.
منابع مشابه
GRP78 secreted by colon cancer cells facilitates cell proliferation via PI3K/Akt signaling.
Glucose regulated protein 78 (GRP78) is usually recognized as a chaperone in the endoplasmic reticulum. However, increasing evidence indicates that GRP78 can be translocated to the cell surface, acting as a signaling receptor for a variety of ligands. Since little is known about the secretion of GRP78 and its role in the progression of colon cancer we here focused on GRP78 from colon cancer cel...
متن کاملCell surface GRP78 promotes tumor cell histone acetylation through metabolic reprogramming: a mechanism which modulates the Warburg effect
Acetyl coenzyme A (acetyl-CoA) is essential for histone acetylation, to promote cell proliferation by regulating gene expression. However, the underlying mechanism(s) governing acetylation remains poorly understood. Activated α2-Macroglobulin (α2M*) signals through tumor Cell Surface GRP78 (CS-GRP78) to regulate tumor cell proliferation through multiple signaling pathway. Here, we demonstrate t...
متن کاملGlucose regulated protein 78 promotes cell invasion via regulation of uPA production and secretion in colon cancer cells
Glucose regulated protein 78 (GRP78) is frequently highly expressed in tumor cells, contributing to the acquisition of several phenotypic cancer hallmarks. GRP78 expression is also positively correlated with tumor metastasis, and promotes hepatocellular carcinoma cell invasion via increasing cell motility, however, other mechanisms involving the prometastatic roles of GRP78 remain to be elucida...
متن کاملInterleukin (IL)11 mediates protein secretion and modification in human extravillous trophoblasts.
BACKGROUND Human trophoblast invasion and differentiation are essential for a successful pregnancy outcome. Dysregulation of these processes can lead to placental pathologies such as pre-eclampsia. The molecular mechanisms; however, are poorly understood. Interleukin (IL)11--a cytokine that regulates endometrial epithelial cell adhesion, trophoblast motility and invasion during implantation--ma...
متن کاملUnfolded protein response signaling impacts macrophage polarity to modulate breast cancer cell clearance and melanoma immune checkpoint therapy responsiveness
The unfolded protein response (UPR) is a stress pathway controlled by GRP78 to mediate IRE1, PERK, and ATF6 signaling. We show that targeting GRP78, IRE1, and PERK differentially regulates macrophage polarization. Specifically, PERK targeting enhanced macrophage proliferation and macrophage-mediated killing but not GRP78 or IRE1. Targeting UPR in cancer cells also differentially affected macrop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016